Exercise 1

Find the derivative of $f(x)=\left(1+2 x^{2}\right)\left(x-x^{2}\right)$ in two ways: by using the Product Rule and by performing the multiplication first. Do your answers agree?

Solution

Use the product rule to differentiate $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\left(1+2 x^{2}\right)\left(x-x^{2}\right)\right] \\
& =\left[\frac{d}{d x}\left(1+2 x^{2}\right)\right]\left(x-x^{2}\right)+\left(1+2 x^{2}\right)\left[\frac{d}{d x}\left(x-x^{2}\right)\right] \\
& =(4 x)\left(x-x^{2}\right)+\left(1+2 x^{2}\right)(1-2 x) \\
& =4 x^{2}-4 x^{3}+1-2 x+2 x^{2}-4 x^{3} \\
& =-8 x^{3}+6 x^{2}-2 x+1
\end{aligned}
$$

Expand the function first

$$
f(x)=x-x^{2}+2 x^{3}-2 x^{4}
$$

and then differentiate it.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x-x^{2}+2 x^{3}-2 x^{4}\right) \\
& =1-2 x+6 x^{2}-8 x^{3}
\end{aligned}
$$

Both approaches give the same answer.

